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Figure 1: The author teaching manipulation behaviors to a robot arm.

Introduction.
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In the field of artificial intelligence (Al), the process of creating knowledge and behaviors is also called “training.” Al is a rapidly developing field that gives
computers the ability to reason, like us. It has numerous applications, from chatbots to recommender systems and self-driving cars. Al is an emerging
technology for conservation efforts that require tracking and identifying wild animals (Wang et al., 2023). Al can also help with animal welfare in zoological
populations by monitoring behavioral patterns and even detecting health abnormalities (Winship & Jones, 2023). If executed ethically, the power of Al has the
potential to benefit humans, animals, and the world we live in.

Mobile ALOHA - A Smart Home Robot - Compilation of Aut...

Video 1: In the future, autonomous robots like this one could help us do housework and other tasks.

Credit: Zipeng Fu and Tony Zhao, Stanford IRIS Lab

An Al trainer seeks to create productive and complex behaviors in the Al learner, and an animal trainer seeks to do the same with their animals. Perhaps
unsurprisingly, these two fields have many related techniques and challenges. Similar to how animal trainers use operant conditioning methods, a widespread
Al technique is called reinforcement learning, and it encompasses an array of methods that allow Al to learn from rewards (Sutton & Barto, 2018, p. 1).
Reinforcement learning was inspired by early research in animal behavior and Thorndike’s law of effect, which also inspired operant conditioning and
Skinner’s behaviorism (Kazdin, 2013, p. 16; Sutton & Barto, 2018, p. 15). Critically, beyond a surface-level similarity in the use of reinforcement, the fields of
animal training and artificial intelligence often face similar challenges while creating complicated behaviors. In this paper, we will explore some of these
intriguing connections between the two fields—and how they can benefit each other.

The Challenge of Credit Assignment.

For an animal to repeat behaviors that are reinforcing, it needs to know the cause of that reward. Otherwise, the animal will not know which behaviors to
continue doing. In the field of Al and cognitive science, this is a problem of causal reasoning, and it can be quite challenging. Superstitious behaviors arise
when an animal assigns an unintended cause to a reward, leading to extraneous behaviors (Ramirez, 1999, p. 552). As an example, a sea lion might
incidentally learn to nod its head while offering a bedding behavior.

In Al, the reinforcement learning framework relies on the explicit propagation of rewards onto past actions (Sutton & Barto, 2018, p. 119), which leaves plenty
of opportunities for superstitions in Al learners as well. As a hypothetical example, consider a robot that fills a glass of water, accidentally spills it, refills the
glass, and hands it to a person. If the robot is rewarded at that moment, it may propagate the reward cause to both the full glass of water and the spilling
procedure. In the future, it may intentionally spill the water as part of the task.

Scarcity of information is a key contributor of superstitions in Al learners and animals. Marine mammal trainers typically use a singular bridge signal to mark a
reward. Likewise, it is more practical to use an all-or-nothing reward with Al because it is easier to detect overall success than to measure the progress of the
target behavior (Ibarz et al., 2021). These all-or-nothing rewards are easier to give, but they leave much to interpretation, and superstitions arise from
alternative reward interpretations (Ramirez, 1999, p. 552). Researchers are interested in making Al that can learn from as little information as possible, making
the marine mammal training setting especially relevant.

Animal trainers have approached superstition challenges in a variety of ways. Most notably, they take advantage of the temporal effect on causality. Events
that occur simultaneously tend to be interpreted as causal (Faro et al., 2013). The bridging stimulus (“bridge”) can be given at the exact time of desired
behavior, leaving very little room for alternative interpretations (Kazdin, 2013, p. 261). Timing and reward structure are also relevant for training Al learners,
and given the strong overlap in the problem setup, advanced behavioral techniques used by animal trainers could inspire new Al training techniques that help
reduce superstitions in Al.

Animal trainers also use long-term relationships with individual animals for better training outcomes. A familiar trainer can also know the types of superstitions
an animal typically develops, which allows them to hold training sessions designed to eliminate superstitious behavior, or even avoid certain training
approximations because of known past superstitions. These strategies demonstrate that superstition reduction should be viewed as a proactive process for
both animal and Al trainers, leading to a better learning outcome for all. Superstitions can be an undesirable phenomenon, but it exposes a fundamental
challenge of learning that transcends the realms of natural and artificial.

Generalization of Learned Behavior.

Animal trainers often hope that their trained behavior will generalize across many different settings, including different times of day, trainers, and locations
within the habitat. Research in Al is also dedicated to improving the generalization of learned behavior. Generalizable behavior is critical for the safety of
animals (Ramirez, 1999, p. 137), and it is also important for safety-critical procedures for Al learners. For example, a self-driving car should be reliable under
any environmental conditions.

If an animal learns a behavior in one situation and it carries over into a new situation, then the behavior is said to have generalized (Chance, 2008, p. 301).
Generalization is easier if the new situation resembles the training situations (Chance, 2008, p. 308), which means that behaviors should generally be trained
under a variety of circumstances (Ramirez, 1999, p. 157). The added situational variability increases the chances of rehearsing a situation similar to the one
needed for the behavior in a new situation. Analogously, a common technique to improve Al generalization is to expose the model to a high diversity of
experiences (Ibarz et al., 2021; Perez & Wang, 2017). However, a key question remains: what sort of experiences help the most? Trainers decide the types of
situations that they show their animals, and these decisions will impact the success of generalization. Al researchers often have large collections of data that
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they can expose their Al learners to, but achieving the right data variety and schedules of exposure are open research questions in creating good Al
generalization.

A critical challenge for behavior generalization occurs when situations are markedly different from those encountered during training. For example, a facility
undergoes construction, or a new trainer is brought onto the team. In these situations, a behavior can be greatly weakened, or it may even stop occurring.
Similar failures can happen with more mundane shifts in context. If an animal is only trained for husbandry in a certain pool, it might not comply when asked in
a different pool. The learned behavior of a robot or other Al learners is also significantly affected by shifts in context. In some robot experiments, a slight shift
to the robot’s camera or a change of room lighting can completely destroy a learned behavior (Ibarz et al., 2021). The current challenges of generalization in
Al robots means that many robot experiments are conducted within the same room and setup, which is far removed from real-world situations.

Mobile ALOHA funny failures

Video 2: Some of the robot failures in this video are caused by lack of generalization.

Credit: Zipeng Fu and Tony Zhao, Stanford IRIS Lab

Generalization is important for successful animal behaviors, and it is a critical and unsolved problem for Al learners too, especially for robots. However, if we
ever want robots and other Al learners to work safely in the real world, they must demonstrate that they can sufficiently generalize in unpredictable situations.

Successful Exploration.

Skilled animal trainers will do their best to set up their animals for success in their sessions and interactions. In contrast, if a trainer hasn’t established explicit
behavior criteria, the animal may not know how to offer the desired behavior in its entirety. Analogously, if we always give the same reward to a hypothetical
robot chef, it may never learn how to cook our favorite foods. Any learner—natural or artificial—must explore the underlying reward structure of an
environment in order to effectively exploit it (Sutton & Barto, 2018, p. 3). If the exploration is not done correctly or the reward structure is too challenging, then
the learner will fail to acquire the desired behavior (Ibarz et al., 2021).

One approach to the exploration challenge is to create the behavior iteratively through successive approximations (Kazdin, 2013, p. 54). Critically, if the
approximations are close enough together, the animal always knows how to achieve the next step. Sophisticated behavior emerges after a sequence of
approximations. In Al, the analogous technique is known as a curriculum. For robots, we may start the robot close to the goal and bring it further back as it
becomes more adept at the easier task (Florensa et al., 2018). We may also train a second robot that creates harder and harder tasks as the primary robot
learns (Luo et al., 2021). However, most curriculums in Al are hand-designed by researchers, and they can be quite primitive. With advanced shaping
techniques inspired by behavioral principles, we may be able to create more intricate Al behavior.

Learner

Figure 2: Robots are occasionally trained through successive approximations. Here, the red robot acts like a target for the orange robot.

Credit: Luo, J., Sushkov, O., Pevceviciute, R., Lian, W., Su, C., Vecerik, M., Ye, N., Schaal, S., & Scholz, J. (2021). Robust Multi-Modal Policies for Industrial
Assembly via Reinforcement Learning and Demonstrations: A Large-Scale Study. arXiv:2103.11512
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In animal training, there are also actions that trainers can take to enhance existing exploration capacities in animals. For example, enrichment can be used to
enhance an animal’s natural curiosity through free play (Clark, 2013; Clegg et al., 2023), which may make it more likely to engage with the trainer and explore
new behaviors. Free play also allows for the spontaneous formation of new behaviors, which can be captured and placed under stimulus control (Pryor, 2000,
2006). In Al—especially for robots—researchers are also trying to get successful exploration through free play (Cui et al., 2022; Lynch et al., 2019). More
generally, innate curiosity and self-driven exploration in Al are active fields of research (Schmidhuber, 1991; Ten et al., 2021).

Above all, animal trainers are skilled at identifying the strengths and deficits in an individual animal through detailed observation, and the resulting customized
training sessions are highly effective in solving the exploration problem (Pryor, 2006). Likewise, customized feedback from a human evaluator can boost
performance of Al learners significantly, and indeed, human feedback is responsible for creating powerful models like ChatGPT (Ouyang et al., 2022; Spencer
et al., 2020). There are still many potential future innovations for productive teacher-learner interactions in Al, which may be inspired by the relationships
between a trainer and their animal. A good animal trainer sets their animals up for success, and a good Al trainer will do the same.

The Future: Behavior in Artificial Intelligence.

For decades, Al researchers have looked at the natural world for inspiration. Many such works were done in a time when computational resources and
architectures were less developed, meaning that the trained models were not comparable to the cognition of natural systems. Now, with the rise of large
models like ChatGPT, artificial cognition is finally partially comparable to natural systems. It opens the possibility to re-explore these Al research problems
through the eyes of a behaviorist. As we have discussed, animal trainers often have a highly intuitive sense for some of the hardest questions of learning—
questions that Al researchers are actively working on. The fields of Al and animal training work on analogous problems, and they have the potential to benefit
each other. Now is the time for these two fields to collaborate.
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